2012年3月23日の愛媛県地方の降水量について

はじめ

広志（日本気象予報士会四国支部）

1. はじめに

愛媛県地方に展開されているAMeDASおよび気象庁算による月別の降水量に着目すると、東予東部では9月に、東予西部、中予、南予では6月もしくは7月に最多値が記録されている。これらの降水をもたらす寒帯は、前者は秋雨前線および台風、後者は梅雨前線である。これらの大災害をもたらす寒帯は、変化の研究者によって様々な視点からの研究が積み重ねられており、その特徴や構造の理解と解明が進んでいるが、春に発生する大雨については十分とは言い難い。農作物の作付けを始めとするにあたるこの季節の降水についての理解を深めることは、気候資源の有効利用の観点からも重要であると考えられる。本稿は、2012年3月23日に低気圧の接近によって発生した愛媛県地方、とりわけ南予北部の降水の形成要因を気象観測データの解析によって明らかにすることを目指す。

2. 降水の概況

愛媛県地方における降水は、まず23日の1時過ぎに松山で発生し、その後東予地方に及び、6時頃には南予地方で10mm/h以上の降水が発生し、9時頃まで続けている。6時から8時まで lesbian時間における降水は瀬戸内66mm、八幡浜で63mmに達している。23日の日降水量分布を図-1に示す。出先した南予北部

図-1 愛媛県地方の日降水量分布

の2地点で80mmを超えており、最多降水量となっている。瀬戸内における10分間降雨量の推移を図-2に示す。

図-2 瀬戸内における10分間降雨量の推移

当日の日降水量は瀬戸内、八幡浜、松山南吉田（松山空港、上林、久万、獅子越峠、成東村の各観測点で3月の値としては統計を採用する初めての最大を記録しており、大洲、御幸、中山、松山地方気象台、今治、大三島、西条で歴代2位となっている。これより、当降水イベントは愛媛県地方の春のにおける代表的な大雨事例として位置づけることができる。

3. 総観点の概況

2月21日には近畿地方の東シナ海を1012hPaの低気圧が東進している。この低気圧は23日9時には九州北部に達し、温暖前線が周防灘から四国を経て紀伊半島沖に延びている（図-3）。同日の事態は低気圧が中は室戸岬付近に進んでいる。低気圧の東進に伴ない、23日9時には850hPa面における西から南西寄りの風による気温が九州地方で明礎に認められ、福岡、鹿児島ともに10℃を上回っている。同時刻の鹿児島における下層から上層までの風向に着目すると、地上付近の南南西の風が高度とともに順転して850hPa面では南西、500hPa面では西風となっている。風速は高度とともに増し、1000hPa面では10m/s、500hPa面で26m/s、500hPa面では28m/sを示している。ジェット気流の中心は200hPa面付近に認められる。
4. 考察
(i) 四国とその周辺における地上相当温位

松山と宇和島における地上相当温位の時系列推移を図－4に示す。南予北部での降水のピークにあたり6時から7時頃にかけてと13時過ぎに宇和島における値の上昇による2地点間の傾度の拡大が認められる。四国とその周辺における地上相当温位の分布を図－5に示す。南予北部において顕著な降水が発生する前の3時の四国周辺の地上相当温位は高知県の清水で最も高い値を示し、高知県南西部で傾度が大きくなっている。6時には清水での暖気移流がさらに強まるとともに宇和島でも極大値を示し、愛媛県南予地方にも前線が形成されている。

(ii) 愛媛県地方における気温分布の推移

気温分布は、0.6℃/100mの高度補正值にて考察を進める。愛媛県地方における気温分布を図－6に示す。3時には南予の宇和海沿岸で10℃以上の値を示しており、宇和島と御住では13℃を超えているが、東予および中予は8～9℃である。この時間における暖気の流
入は宇和海沿岸部にとどまっているが、6時には南予南部における値がさらに上昇するとともに中予内陸の久万で13℃を超える値となっており、暖気が宇和海から東北東の方向に流入していることがわかる。南予北部において降水イベントが発生・活発化した3時から9時までの6時間における気温の上昇量を図-7に示す。

図-7 3時から9時までの6時間における気温の上昇量
この値は宇和で最も大きくとなっており、6℃を上回っている。上昇量の大きい領域は6時における暖気流入域とほぼ一致している。この時間帯において東洋沿岸部と佐田岬半島の瀬戸では気温が低下している。これらより、南予北部の降水は気温の上昇量が大きい区域の北側の温度傾度の急な領域を中心に出発したことがわかる。

図-8 愛媛県地方における南風成分の分布(2)
近水、宇和の各地点で正の値が観測されている。考察対象領域の北側にあたる伊予灘沿岸で負の値、南側の宇和島付近で正の値であることにより、南予地方との周辺の観測点の値を2次元空間に内挿することによって得られる0の等値線は南北方向の向東線に相当すると考えられる。この線は6時には松山付近から大洲を経て宇和海北部にかけて形成されており、強雨軸とほぼ一致している。

図-9 愛媛県地方における東風成分の分布
愛媛県地方における地上風の西風成分の分布の推移と伊予灘沿岸部の観測点に着目すると、瀬戸では0ないし正の値で、長浜では負の値でそれぞれ推移している。内陸部の宇和では負の値で推移している。降水のピークにあたる6時には松山から大洲を経て宇和海に至る領域に0の等値線が形成されている(図-9)。これにより流下風成分の推移とほぼ一致しているが、西風成分は長浜を中心とする伊予灘沿岸、南予南部の内陸、東予西部で負の値を示し、中予内陸から東予東部にかけて正の値となっていることにより、東西方向
2012年3月23日の愛媛県地方の降水について

については収束線ではなく、むしろ発散の中心であると考えられる。各観測点における指標値の分布より、南予北部の東西方向の発散量は南北方向の収束量に比べると十分に小さいと判断される。

(v) 多降水量域とその周辺における地上風と降水量との関係

多降水量域とその周辺にあたる宇和島、宇和、大洲、瀬戸、長浜、各地点において、地上風の西風成分・南風成分のそれぞれと10分間降水量との関係を調べた。その結果を表-1に示す。長浜、宇和島、降水量イベント中の昇温が最大であった宇和においては地上風と降水量との間に相関関係はほとんど認められない。南風成分と降水量との関係に着目すると、瀬戸では1％水準のt検定で有意な負の相関関係が、大洲では5％水準のt検定で有意な正の関係がそれぞれ認められる。瀬戸に降水イベントの期間を通して気温は9℃前後で推移しており、宇和で見られたような昇温はない。これより、瀬戸の降水は暖気の存在による前線傾度の拡大に起因するものと考えられる。これに対して大洲における降水は主として暖気移流によってもたらされたものと見られる。瀬戸と大洲で降水の成因が異なることは、降水のピーク時における地上風の南北方向の収束線が松山付近から大洲を経て宇和海北部にかけて形成されていることと符合しているものと考えられる。

表-1 地上風と降水量との関係

<table>
<thead>
<tr>
<th>目的変数(y)</th>
<th>説明変数(x)</th>
<th>観測点</th>
<th>回帰式(y = ax + b)</th>
<th>相関係数(r)</th>
<th>データ数(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>宇和島</td>
<td>y = 0.008 x + 0.436</td>
<td>0.026</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>宇和</td>
<td>y = -0.109 x + 0.651</td>
<td>-0.183</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>大洲</td>
<td>y = 0.307 x + 0.802</td>
<td>0.210</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>瀬戸</td>
<td>y = -0.103 x + 1.059</td>
<td>-0.074</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>長浜</td>
<td>y = 0.049 x + 0.629</td>
<td>0.137</td>
<td>85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

相関係数rの右上に※※を付したものは1％水準のt検定で有意なものであり、※は5％水準で有意であることを示す。

(iv) 南風による水蒸気輸送量と降水との関係

絶対湿度の算出が可能な観測データの得られる松山と宇和島において、絶対湿度と南風成分との積で表わされる北向きの水蒸気輸送量の10分間平均値の時系列推移を調べた。絶対湿度の推移を図-10に、南風成分のそれを図-11に、北向きの水蒸気輸送量についてを図-12にそれぞれ示す。宇和島における値は南予北部での降水のピーク時にあたる6時から7時にかけて最大となっている。これを経て、標記2地点間の相当温

図-10 松山と宇和島における絶対湿度の推移

図-11 松山と宇和島における南風成分の推移

図-12 北向きの水蒸気輸送量（絶対湿度×南風成分）の推移
位相制が再び拡大した13時頃の当指標値に着目すると、2地点ともに降水のピーク時よりも絶対湿度が高いが、南風成分が小さいために低くなってしまい、降水量が少ないことが示す結果となっています。以上に地上風の南風成分の分布の変化を計測し、南予北部の降水は南寄りの風の流入と収束によって生じたことがわかる。

宇和島における北向きの水蒸気輸送量と南予北部の降水との関係について調べた。ここで考察の対象とする南予北部の観測点は、南からの水蒸気輸送の直接の影響によって降水が発生していると考えられる地点、すなわち降水イベントの期間に気温が上昇し、なおかつ降水のピーク時において正の南風成分が観測されている宇和と大洲の2地点とした。宇和島における北向きの水蒸気輸送量は、5:40から6:40にかけて正の値を示しており、これが宇和および大洲に移動して降水量に反映されたと考え、標記時間帯の10分ステップの7個の一連の水蒸気輸送量のデータと、5:40からの10分スティックのタイムラグにおける宇和と大洲の連続した7つの10分間降水量データとの相関係数を調べた。その結果を図13に示す。宇和、大洲ともに50分後と

宇和島から大洲にかけての地域における強雨の消長について、レーダー合成図の時系列変化より調べた（図略）。降水のピーク前にあたる6:00から6:30にかけては12mm/h以上の降雨強度の領域は主として宇和海および伊予灘の海上に散在している。6:40頃には宇和島西方沖の宇和海における強雨域が広がり、陸上に点在する強雨域と一体化して7:40頃まで標記地域に滞留している。その後強雨域は縮小し、8:10頃には南予地方で12mm/h以上の領域はほとんど消減している。

南予北部での降水の生成に寄与した南風の発生機構について、気圧場とその変化の観点より考察する。図にその周辺における海面気圧分布の推移を図14に

図13 タイムラグ値と相互相関係数

120分後に正の相関関係のピークが認められる。観測地点の位置関係より、宇和では宇和島の北向きの水蒸気輸送量が正の値を示してから50分後、6:30頃に大洲では120分後の7:40に水蒸気塊が到達して降水量が増大されたものと推定することが可能である。これより、この降水系が一つのものであると見なした場合の移動速度を検討すると、およそ25km/h（7m/s）となる。宇和島からの水蒸気塊が到達したと推定される時間における宇和と大洲の地上風の実測値、前者が南東で2m/s、後者が北西で0.4m/sである。観測された移動速度は地上風の実測値に比べると大きくなり、推定される気塊の移動方向と風向も一致しない。

図14 海面気圧
示す。降水イベント発生前の3時においてはほぼ西から東に向かうに従って高い値を示している。6時には1010hPa以下の低圧部が日向灘方面から宇和島に達し、四国地方における東西方向の気圧傾度は拡大している。これより、四国西部の気圧場の風は南～南西寄りとなり、宇和島での地上風の観測値とも一致している。13時には当該領域の全域で気圧が低下するとともに傾度も緩やかになり、南風は弱まる状況となっている。

5. まとめ
愛媛県南予北部における降水は、九州北部を東進する低気圧の温暖前線によってもたらされた。強雨軸、気温の傾度と上昇量の大きい領域、地上風の南風成分の収束域の三者はほぼ一致している。水蒸気輸送量の時系列推移と地上風の南風成分の分布の変化より、南寄りの風の流入と収束が降水の形成に寄与している。この南寄りの風は低圧部の東進によって四国地方の気圧傾度が拡大することでもたらされた。

謝辞
本研究を遂行するにあたり、京都産業大学名誉教授の藤井健先生から懇切にご指導いただき、日本気象予報士会の皆様から有意義な多くのご助言をいただいた。以上の方々に心より御礼申し上げます。

参考文献
一 広志, 2011：近年の梅雨期における松山での大雨発現時の気象特性について～2011年7月4日の事例解析を併せて～. 日本気象学会例会講演要旨集第125号, 20-23
水野篤夫, 谷口典史, 田中滋司, 依岡幸広, 2009：2006年9月6日の高知県沿岸に発生した線状降水帯について. 日本気象学会例会講演要旨集第118号, 1-4